Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mountains and islands provide an opportunity for studying the biogeography of diversification and population fragmentation. Aotearoa (New Zealand) is an excellent location to investigate both phenomena due to alpine emergence and oceanic separation. While it would be expected that separation across oceanic and elevation gradients are major barriers to gene flow in animals, including aquatic insects, such hypotheses have not been thoroughly tested in these taxa. By integrating population genomic from sub-genomic Anchored-Hybrid Enrichment sequencing, ecological niche modeling, and morphological analyses from scanning-electron microscopy, we show that tectonic uplift and oceanic vicariance are implicated in speciation and population structure in Kapokapowai (Uropetala) dragonflies. Although Te Moana o Raukawa (Cook Strait), is likely responsible for some of the genetic structure observed, speciation has not yet occurred in populations separated by the strait. We find that the altitudinal gradient across Kā Tiritiri-o-te-Moana (the Southern Alps) is not impervious but it significantly restricts gene flow between aforementioned species. Our data support the hypothesis of an active colonization of Kā Tiritiri-o-te-Moana by the ancestral population of Kapokapowai, followed by a recolonization of the lowlands. These findings provide key foundations for the study of lineages endemic to Aotearoa.more » « lessFree, publicly-accessible full text available November 26, 2025
-
Roux, Simon (Ed.)ABSTRACT Here, we report the draft genome sequences ofFlagellimonassp. MMG031 andMarinobactersp. MMG032, isolated from coral-associated dinoflagellateSymbiodinium pilosum, assembled and analyzed by undergraduate students participating in a Marine Microbial Genomics (MMG) course. A genomic comparison suggests MMG031 and MMG032 are novel species and a resource for restoration and biotechnology.more » « lessFree, publicly-accessible full text available January 16, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Mental rotation is a critically important, early developing spatial skill that is related to other spatial cognitive abilities. Understanding the early development of this skill, however, requires a developmentally appropriate assessment that can be used with infants, toddlers, and young children. We present here a new eye-tracking task that uses a staircase procedure to assess mental rotation in 12-, 24-, and 36-month-old children (N = 41). To ensure that all children understood the task, the session began with training and practice, in which the children learned to fixate which of two houses a giraffe, facing either left or right, would approach. The adaptive two-up, one-down staircase procedure assessed the children’s ability to fixate the correct house when the giraffe was rotated in 30° (up) or 15° (down) increments. The procedure was successful, with most children showing evidence of mental rotation. In addition, the children were less likely to succeed as the angle of rotation increased, and the older children succeeded at higher angles of rotation than the younger children, replicating previous findings with other procedures. The present study contributes a new paradigm that can assess the development of mental rotation in young children and holds promise for yielding insights into individual differences in mental rotation.more » « less
-
Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations – distributed across the variable light and heavy chains – that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the V H -V L interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.more » « less
-
Mobile robots must navigate efficiently, reliably, and appropriately around people when acting in shared social environments. For robots to be accepted in such environments, we explore robot navigation for the social contexts of each setting. Navigating through dynamic environments solely considering a collision-free path has long been solved. In human-robot environments, the challenge is no longer about efficiently navigating from one point to another. Autonomously detecting the context and adapting to an appropriate social navigation strategy is vital for social robots’ long-term applicability in dense human environments. As complex social environments, museums are suitable for studying such behavior as they have many different navigation contexts in a small space.Our prior Socially-Aware Navigation model considered con-text classification, object detection, and pre-defined rules to define navigation behavior in more specific contexts, such as a hallway or queue. This work uses environmental context, object information, and more realistic interaction rules for complex social spaces. In the first part of the project, we convert real-world interactions into algorithmic rules for use in a robot’s navigation system. Moreover, we use context recognition, object detection, and scene data for context-appropriate rule selection. We introduce our methodology of studying social behaviors in complex contexts, different analyses of our text corpus for museums, and the presentation of extracted social norms. Finally, we demonstrate applying some of the rules in scenarios in the simulation environment.more » « less
An official website of the United States government
